Bermuda Island: Arrival - Documentation

Controls
Commands Action
W,A S, D Move character
Mouse Control view
Right Mouse Zoom

There are a total of 6 objects to collect. After every one of them if collected the game is won,
however there is also a timer. If the time runs out before every object is collected, the game
is lost. A special object (the telescope & map) allows the player to zoom.

Camera
We are using first person view with a FOV of 65. The view is limited to + and - 90 degrees up,
so the camera cannot turn upside down.

Collision Detection
For collision detection we are using Bullet. Our Player collides with the terrain and the water
(jesus mode).

e Requirements
o Effects

m Shadow Mapping (1.5): For Shadow Mapping we are rendering a depth
texture from the light source’s direction using orthogonal projection to
the origin and are drawing shadows using that information. Our far
plane is very far away, therefore a high shadow map resolution of
4096 is used. The PCF feature is therefore quite minimized, but still
noticeable if one looks hard enough.

m Environment Mapping (1): For the environment map we are reusing
the cube map generated for the skybox and are sampling pixels from
it using a shader. This shader is merged into the shadow mapping
shader using a boolean flag to determine if an object is supposed to
use environment mapping. For our pickup-objects and our water plane
we are using environment mapping.

m Cel-Shading (0.5): After color calculation the color adjusted based on
intensity in a fragment-shader.

m Depth of Field (1.5): Everything is rendered into a color- and a
depth-texture. The color texture is then manipulated based on the
depth texture in the fragment-shader (post-processing).

o Complex Objects
m Terrain, Palm trees, Object following the player (look up)

m All models are self-made
m Object and Texture loaders are implemented (Freelmage, Stbimage)

o Animated Objects
m Sphere moving with the player while rotating

o View-Frustum-Culling
m Since all our trees are in one mesh (:/) and our terrain has way too
many vertices for our current algorithm to work efficiently (currently
checking if points are inside frustum), we are only checking the
collectable objects. Terrain and trees therefore never get culled.

o Experimenting with OpenGL
m Several FrameBuffers were used
e Shadow Mapping
e Depth of Field
e Drawing outlines in Post-Processing (removed because they
did not look fitting - DEPRECATED)

m Mip Mapping
e Implemented with Nearest filtering + Anisotropic filtering

e Features
o Interaction with models to collect them
o Depth of field shader includes autofocus
o Collision detection
Startup parameters, Fullscreen flag can be set
e lllumination
o We only have one light source, which represents the moon, even though it is
very bright because of projector problems

O

Tools:

Blender https://blenderartists.org/forum/
Gimp https://www.gimp.org/

Paint

Libraries:

Freelmage http://freeimage.sourceforge.net/

GLM http://glm.g-truc.net/0.9.8/index.html

GLEW http://glew.sourceforge.net/

GLFW http://www.glfw.org/

Bullet https://qithub.com/bulletphysics/bullet3/releases

Tutorials / Sources:
https://blenderartists.org/forum/showthread.php?237488-GL SL-depth-of-field-with-bokeh-v2

-4-(update)

http://glm.g-truc.net/0.9.8/index.html
http://freeimage.sourceforge.net/
http://www.glfw.org/
https://blenderartists.org/forum/showthread.php?237488-GLSL-depth-of-field-with-bokeh-v2-4-(update)
https://blenderartists.org/forum/
https://blenderartists.org/forum/showthread.php?237488-GLSL-depth-of-field-with-bokeh-v2-4-(update)
https://github.com/bulletphysics/bullet3/releases
http://glew.sourceforge.net/
https://www.gimp.org/

https://r3dux.org/2014/10/how-to-load-an-opengl-texture-using-the-freeimagelibrary-or-freei
mageplus-technically/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-6-keyboard-andmouse/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-loading/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-14-render-to-texture/
https://developer.mozilla.org/enUS/docs/Games/Techniques/3D_collision_detection
https://computergraphics.stackexchange.com/questions/3646/opengl-glsl-sobel-edge-dete
ction-filter (later removed)
https://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
https://learnopengl.com/#!Advanced-OpenGL/Cubemaps

https://r3dux.org/2014/10/how-to-load-an-opengl-texture-using-the-freeimagelibrary-or-freeimageplus-technically/
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-14-render-to-texture/
https://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-6-keyboard-andmouse/
https://developer.mozilla.org/enUS/docs/Games/Techniques/3D_collision_detection
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-loading/
https://learnopengl.com/#!Advanced-OpenGL/Cubemaps
https://computergraphics.stackexchange.com/questions/3646/opengl-glsl-sobel-edge-detection-filter
https://computergraphics.stackexchange.com/questions/3646/opengl-glsl-sobel-edge-detection-filter
https://r3dux.org/2014/10/how-to-load-an-opengl-texture-using-the-freeimagelibrary-or-freeimageplus-technically/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/

